Integrators
This page shows the availabe integrators. Integrators prefixed with _H
are used for the Hirota equation, and those with _SS
are for the Sasa-Satsuma equation. Note that both these equations are not fully tested and should be used with utmost care due to the periodic boundary conditions.
NonlinearSchrodinger.T1A!
NonlinearSchrodinger.T1A_H!
NonlinearSchrodinger.T1A_SS!
NonlinearSchrodinger.T1B!
NonlinearSchrodinger.T2A!
NonlinearSchrodinger.T2A_H!
NonlinearSchrodinger.T2B!
NonlinearSchrodinger.T4A_CMP!
NonlinearSchrodinger.T4A_SF!
NonlinearSchrodinger.T4A_TJ!
NonlinearSchrodinger.T4B_CMP!
NonlinearSchrodinger.T4B_SF!
NonlinearSchrodinger.T4B_TJ!
NonlinearSchrodinger.T6A_CMP!
NonlinearSchrodinger.T6A_KLs9!
NonlinearSchrodinger.T6A_SF!
NonlinearSchrodinger.T6A_Ss14!
NonlinearSchrodinger.T6A_TJ!
NonlinearSchrodinger.T6A_Ys7!
NonlinearSchrodinger.T6B_CMP!
NonlinearSchrodinger.T6B_KLs9!
NonlinearSchrodinger.T6B_SF!
NonlinearSchrodinger.T6B_Ss14!
NonlinearSchrodinger.T6B_TJ!
NonlinearSchrodinger.T6B_Ys7!
NonlinearSchrodinger.T8A_CMP!
NonlinearSchrodinger.T8A_KLs17!
NonlinearSchrodinger.T8A_SF!
NonlinearSchrodinger.T8A_Ss15!
NonlinearSchrodinger.T8A_TJ!
NonlinearSchrodinger.T8B_CMP!
NonlinearSchrodinger.T8B_KLs17!
NonlinearSchrodinger.T8B_SF!
NonlinearSchrodinger.T8B_Ss15!
NonlinearSchrodinger.T8B_TJ!
NonlinearSchrodinger.T1A!
— FunctionT1A!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using a symplectic first order integrator of type A. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T1B!
— FunctionT1B!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using a symplectic first order integrator of type B. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T2A!
— FunctionT2A!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using a symplectic second order integrator of type A. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T2B!
— FunctionT2B!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using a symplectic second order integrator of type B. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T4A_TJ!
— FunctionT4A_TJ!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using a symplectic Triple Jump Fourth order integrator of type A. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T4B_TJ!
— FunctionT4B_TJ!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using a symplectic Triple Jump Fourth order integrator of type B. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T6A_TJ!
— FunctionT6A_TJ!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using a symplectic Triple Jump Sixth order integrator of type A. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T6B_TJ!
— FunctionT6B_TJ!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using a symplectic Triple Jump Sixth order integrator of type B. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T8A_TJ!
— FunctionT8A_TJ!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using a symplectic Triple Jump Eighth order integrator of type A. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T8B_TJ!
— FunctionT8A_TJ!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using a symplectic Triple Jump Eighth order integrator of type B. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T4A_SF!
— FunctionT4A_SF!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using a symplectic Suzuki's Fractal Fourth order integrator of type A. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T4B_SF!
— FunctionT4B_SF!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using a symplectic Suzuki's Fractal Fourth order integrator of type B. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T6A_SF!
— FunctionT6A_SF!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using a symplectic Suzuki's Fractal Sixth order integrator of type A. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T6B_SF!
— FunctionT6B_SF!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using a symplectic Suzuki's Fractal Sixth order integrator of type B. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T8A_SF!
— FunctionT8A_SF!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using a symplectic Suzuki's Fractal Eighth order integrator of type A. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T8B_SF!
— FunctionT8B_SF!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using a symplectic Suzuki's Fractal Eighth order integrator of type B. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T4A_CMP!
— FunctionT4A_CMP!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using a Chin Multi-Product Fourth order integrator of type A. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T4B_CMP!
— FunctionT4B_CMP!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using a Chin Multi-Product Fourth order integrator of type B. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T6A_CMP!
— FunctionT6A_CMP!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using a Chin Multi-Product Sixth order integrator of type A. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T6B_CMP!
— FunctionT6B_CMP!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using a Chin Multi-Product Sixth order integrator of type B. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T8A_CMP!
— FunctionT8A_CMP!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using a Chin Multi-Product Eighth order integrator of type A. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T8B_CMP!
— FunctionT8B_CMP!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using a Chin Multi-Product Eighth order integrator of type B. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T6A_Ss14!
— FunctionT6A_Ss14!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using Suzuki's s14 Symplectic Sixth order integrator of type A. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T6B_Ss14!
— FunctionT6B_Ss14!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using Suzuki's s14 Symplectic Sixth order integrator of type B. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T6A_Ys7!
— FunctionT6A_Ys7!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using Yoshida's s7 Symplectic Sixth order integrator of type A. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T6B_Ys7!
— FunctionT6B_Ys7!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using Yoshida's s7 Symplectic Sixth order integrator of type B. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T6A_KLs9!
— FunctionT6A_KLs9!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using Kahan & Li's s9 Symplectic Sixth order integrator of type A. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T6B_KLs9!
— FunctionT6B_KLs9!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using Kahan & Li's s9 Symplectic Sixth order integrator of type B. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T8A_Ss15!
— FunctionT8A_Ss15!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using Suzuki's s15 Symplectic Eighth order integrator of type A. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T8B_Ss15!
— FunctionT8B_Ss15!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using Suzuki's s15 Symplectic Eighth order integrator of type B. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T8A_KLs17!
— FunctionT8A_KLs17!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using Kahan & Li's s17 Symplectic Eighth order integrator of type A. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T8B_KLs17!
— FunctionT8B_KLs17!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using Kahan & Li's s17 Symplectic Eighth order integrator of type B. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T1A_H!
— FunctionT1A_H!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using a symplectic first order integrator of type A for the Hirota equation. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T2A_H!
— FunctionT2A_H!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using a symplectic second order integrator of type A for the Hirota equation. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.
NonlinearSchrodinger.T1A_SS!
— FunctionT1A_SS!(ψₒ, ψᵢ, dx, ops)
Compute ψₒ
, i.e. ψᵢ
advanced a step dx
forward using a symplectic first order integrator of type A for the Sasa-Satsuma equation. The structure ops::Operators
contains the FFT plans and the kinetic energy operators.